Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models
Stefanie Buchholz,
Mette Gamst and
David Pisinger
Applied Energy, 2020, vol. 269, issue C, No S0306261920304505
Abstract:
Time aggregation techniques have shown great potential for efficiently solving comprehensive energy system models. Numerous studies document significant solution time reductions while maintaining high solution qualities. However, most of these studies lack providing guidelines for which aggregation techniques to use in a given setup, and why. A recent interest of comparing different aggregation techniques has arisen, and this paper contributes to that trend. We present a sensitivity analysis methodology that studies how different problem changes, influence the aggregation technique performances. The performance is measured as the ability of the aggregated problem to fully or partially replicate the solution achieved by the non-aggregated problem. The applicability of the methodology is illustrated through a case study considering three types of problem changes namely changes in the wind availability, changes in the aggregated problem size, and changes in the energy system design. By applying the suggested methodology to ten different aggregation techniques, key properties which seem to ensure promising performance are identified.
Keywords: Capacity expansion problem; Solution time reductions; Time aggregation; Sensitivity analysis; Performance comparison (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920304505
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114938
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().