Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential
Haoran Zhang,
Jinyu Chen,
Wenjing Li,
Xuan Song and
Ryosuke Shibasaki
Applied Energy, 2020, vol. 269, issue C, No S030626192030550X
Abstract:
Spreading green and low-consumption transportation methods is becoming an urgent priority. Ride-sharing, which refers to the sharing ofcarjourneys so that more than one person travel in a car, and prevents the need for others to drive to a location themselves, is a critical solution to this issue. Before being introduced into one place, it needs a potential analysis. However, current studies did this kind of analysis based on home and work locations or social ties between people, which is not precise and straight enough. Few pieces of research departed from real mobility data, but uses time-consuming methodology. In this paper, we proposed an analysis framework to bridge this gap. We chose the case study of Tokyo area with over 1 million GPS travel records and trained a deep learning model to find out this potential. From the computation result, on average, nearly 26.97% of travel distance could be saved by ride-sharing, which told us that there is a significant similarity in the travel pattern of people in Tokyo and there is considerable potential of ride-sharing. Moreover, if half of the original public transit riders in our study case adopt ride-sharing, the quantity of CO2 is estimated to be reduced by 84.52%; if all of the original public transit riders in our study case adopt ride-sharing, 83.56% of CO2 emission reduction can be expected with a rebound effect because of increase of participants from public transit. Ride-sharing can not only improve the air quality of these center business districts but also alleviate some city problems like traffic congestion. We believe the analysis of the potential of ride-sharing can provide insight into the decision making of ride-sharing service providers and decision-makers.
Keywords: Ride-sharing; Deep learning; Users matching; Potential emission reduction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030550X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s030626192030550x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115038
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().