EconPapers    
Economics at your fingertips  
 

Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials

Yaroslav Grosu, Yanqi Zhao, Alberto Giacomello, Simone Meloni, Jean-Luc Dauvergne, Artem Nikulin, Elena Palomo, Yulong Ding and Abdessamad Faik

Applied Energy, 2020, vol. 269, issue C, No S0306261920306000

Abstract: Impregnation of Phase Change Materials (PCMs) into a porous medium is a promising way to stabilize their shape and improve thermal conductivity, which are essential for thermal energy storage and thermal management of small-size applications, such as electronic devices or batteries. However, in these composites a general understanding of how leakage is related to the characteristics of the porous material is still lacking. As a result, the energy density and the antileakage capability are often antagonistically coupled. In this work we overcome the current limitations, showing that a high energy density can be reached together with superior anti-leakage performance by using hierarchical macro-nanoporous metals for PCMs impregnation. By analyzing capillary phenomena and synthesizing a new type of material, it was demonstrated that a hierarchical trimodal macro-nanoporous metal (copper) provides superior antileakage capability (due to strong capillary forces in nanopores), high energy density (90 vol% of PCM load due to macropores) and improves the charging-discharging kinetics, due to a three-fold enhancement of thermal conductivity. It was further demonstrated by CFD simulations that such a composite can be used for thermal management of a battery pack and, unlike pure PCM, it is capable of maintaining the maximum temperature below the safety limit. The present results pave the way for the application of hierarchical macro-nanoporous metals for high-energy density, leakage-free, and shape-stabilized PCMs with enhanced thermal conductivity. These innovative composites can significantly facilitate the thermal management of compact energy systems such as electronic devices or high-power batteries by improving their efficiency, durability, and sustainability.

Keywords: Phase change material; Shape stabilization; Nanoporous metals; Thermal energy storage; Leakage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306000
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306000

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115088

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306000