EconPapers    
Economics at your fingertips  
 

A techno-economic sizing method for grid-connected household photovoltaic battery systems

Yijie Zhang, Tao Ma, Pietro Elia Campana, Yohei Yamaguchi and Yanjun Dai

Applied Energy, 2020, vol. 269, issue C, No S0306261920306188

Abstract: Battery storage provides an effective solution to alleviate the burden of the intermittent photovoltaic production on the grid and increase photovoltaic penetration in residential houses. Despite several existing work dedicated to the evaluation of photovoltaic battery system, the research on system sizing and operation strategy of the household system still has substantial areas to be explored such as techno-economic analysis under different electricity tariffs and comprehensive parametric analyses. In this paper, the mathematical model of a photovoltaic battery system is developed to investigate system performance, based on the various economic and technical indicators. This study demonstrates that the integration of battery energy storage could increase the value of self-consumption and self-sufficiency rates while making payback period longer. Substantial photovoltaic battery systems have been simulated under practical dynamic electricity tariffs in a typical electricity market. Eight cases with different technical performances from the recommended reference combinations are compared and studied in detail. The energy flows among photovoltaic, battery bank, grid and household user are discussed, revealing that systems with high self-sufficiency rate lead to more schedulable photovoltaic production, sold electricity and lower battery usage rate than those with high self-consumption rate. Besides, the entire lifecycle economic analysis indicates that a higher self-sufficiency rate refers to higher initial investment but shorter payback period and larger profit. The revenues breakdown of the cases shows that subsidies have a significant impact, especially for cases with high self-sufficiency rate. The levelized cost of electricity of photovoltaic and photovoltaic battery systems ranges from 0.373 to 0.628 CNY/kWh, demonstrating the possibility of partial grid parity under the current situation in Shanghai.

Keywords: Photovoltaic battery system; Self-sufficiency rate; Self-consumption rate; Levelized cost of electricity; Payback period; Distributed energy storage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306188
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306188

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115106

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306188