An innovative building envelope with variable thermal performance for passive heating systems
Pengfei Si,
Yuexia Lv,
Xiangyang Rong,
Lijun Shi,
Jinyue Yan and
Xin Wang
Applied Energy, 2020, vol. 269, issue C, No S0306261920306875
Abstract:
The integration of passive solar heating strategies into the existing buildings has been considered as an innovative and effective approach to mitigate energy and environmental issues. To balance the trade-off between solar heat gain and thermal insulation in traditional passive solar systems, this paper presented an innovative envelope with variable thermal performance for passive solar buildings. Field measurement was carried out to validate the feasibility of the transparent building envelope under step control operation strategy to building comfortable indoor environment especially in cold plateau areas. The experimental results show that, even under harsh climate conditions, the application of the proposed building envelope effectively increases the heat gain and maintains indoor temperature at a relatively comfortable level in the studied case. The average indoor air temperature of the studied rooms is at 13.0–14.0 °C, with the highest temperature up to 21 °C. Numerical simulation by DesignBuilder software was further developed to exploit the efficiency of the proposed building envelope under the step control operation strategy for increasing the indoor temperature. The simulation results show the same tendency with the filed measurement results. The operation strategy of opening indoor window at 10:00 am and closing at 5:00 pm can achieve the maximization of solar gain, significantly increasing the indoor temperature. Attributed to good balance between solar heat gain coefficient and thermal resistance, the average temperature of the room with the proposed envelope mode is 2.0 °C (sunny day) and 1.5 °C (cloudy day) higher than that of another three passive solar envelope operation modes, respectively. In general, the proposed building envelope with variable thermal performance has high potential to improve the indoor thermal environment in cold plateau areas at low cost.
Keywords: Passive solar building; Solar heat gain coefficient; Thermal resistance; Renewable energy; Variable thermal performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306875
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306875
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115175
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().