Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids
Mosè Rossi,
Gabriele Comodi,
Nicola Piacente and
Massimiliano Renzi
Applied Energy, 2020, vol. 270, issue C, No S0306261920306097
Abstract:
Chemical plants like oil refineries involve energy intensive processes. Several energy efficiency interventions are being performed in oil refineries to meet the latest emission targets, but few of them are related to the energy recovery from process liquids. In this paper, an energy recovery study of an Italian oil refinery is presented: specifically, a Hydraulic Power Recovery Turbine (HPRT), coupled with the shaft of the feed pump used in the same process, is used to replace a Pressure Reducing Valve (PRV). The machine is installed in the H2S removal process and it exploits the Selexol® solvent. A new model that predicts the Best Efficiency Point (BEP) of the HPRT in turbine mode when handling liquids different from water is discussed and validated through operational BEP data. The HPRT supplies 349.3 kW to the feed pump, leading to a yearly electric energy recovery of 2966 MWh and a maximum PayBack Period (PBP) close to 9 years considering the installation, the Carbon Dioxide Equivalent (CDE) allowances and both operational and maintenance costs. The obtained PBP is quite high, but the installation costs would be fairly lower if the HPRT is already considered in the design phase of the chemical process.
Keywords: Hydraulic Power Recovery Turbine; Oil refinery; Energy efficiency; BEP prediction model; Viscous liquids (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306097
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:270:y:2020:i:c:s0306261920306097
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115097
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().