Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation
Thabo G. Hlalele,
Raj M. Naidoo,
Ramesh C. Bansal and
Jiangfeng Zhang
Applied Energy, 2020, vol. 270, issue C, No S0306261920306322
Abstract:
In this paper, a stochastic multi-objective economic dispatch model is presented under renewable obligation policy framework. This proposed model minimises the total operating costs of generators and spinning reserves under renewable obligation while maximising renewable penetration. The intermittent nature of the wind and photovoltaic power plants is incorporated into the renewable obligation model. In order to minimise the cycling costs associated with ramping the thermal generators, the battery energy storage system units are included in the model to assist the system spinning reserves. Dynamic scenarios are created to deal with the intermittency of renewable energy sources. Due to the computational complexity of all possible scenarios, a scenario reduction method is applied to reduce the number of scenarios and solve the proposed stochastic renewable obligation model. A Pareto optimal solution is presented for the renewable obligation, and further decision making is conducted to assess the trade-offs associated with the Pareto front. To show the effectiveness of the proposed stochastic renewable obligation model, two IEEE test systems are used, i.e., the modified IEEE 30-bus and IEEE 118-bus system. In both test systems, the proposed model can attain high renewable penetration while minimising the expected operating cost. In the large IEEE 118-bus test system, the computational efficiency of the renewable obligation model is demonstrated by reducing the line constraints by 87% which minimises the computing time. A comparative study evaluates the impact of the stochastic model to the deterministic one, and it shows that the stochastic model can achieve high renewable penetration.
Keywords: Battery energy storage system; Pareto frontier; Photovoltaic generators; Renewable energy obligation; Stochastic dynamic economic dispatch; Scenario generation; Wind energy generators (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306322
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:270:y:2020:i:c:s0306261920306322
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115120
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().