Seawater based mixed methane-THF hydrate formation at ambient temperature conditions
Gaurav Bhattacharjee,
Hari Prakash Veluswamy,
Rajnish Kumar and
Praveen Linga
Applied Energy, 2020, vol. 271, issue C, No S030626192030670X
Abstract:
We investigate mixed methane-THF hydrate formation at ambient temperature (298.2 K), using natural seawater to make up the hydrate forming solution. The study has been performed with the objective of boosting the economic and operation feasibility of SNG (solidified natural gas) hydrate formation. While high operating temperature and inherently present salts in seawater inhibit rapid hydrate formation with high gas uptake, using amino acids such as L-arginine and L-tryptophan allows a certain level of enhancement in hydrate formation kinetics. A second thermodynamic promoter, 0.3 mol % TBAF (tetra-n-butylammonium fluoride) in the solution facilitates roughly 25% increase in the gas uptake as compared to a counterpart TBAF-free system for the same hydrate formation period. Mapping the hydrate formation morphology reveals subtle details about how the additives employed affect the physical characteristics of hydrates being formed as well as the mechanisms of hydrate growth. This information may be put to good use especially when streamlining the technology for commercial adoption. Finally, the combinatorial hybrid (stirred & unstirred) approach for hydrate formation employed successfully eliminates the stochasticity associated with hydrate nucleation. All systems studied returned induction times of less than or approximately 3 min, with a high degree of reproducibility. Being the first study to investigate SNG hydrate formation at ambient temperature and employing seawater directly, the results obtained in this work set a fundamental benchmark for further research on this economically and operationally inviting prospect, and should be of interest to academic and industry personnel alike.
Keywords: Gas hydrates; Methane storage; Morphology; Kinetics; Seawater; Ambient temperature; TBAF (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030670X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s030626192030670x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115158
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().