Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios
Siyang Wang and
Xianke Lin
Applied Energy, 2020, vol. 271, issue C, No S0306261920307455
Abstract:
This paper proposes a bi-level eco-driving control strategy for connected and automated hybrid electric vehicles (CAHEVs) under mixed driving scenarios. First, the hybrid electric vehicle powertrain is modelled, and the communications via Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) are introduced as the main data sources for the decision-making of the control system. Next, the problem is divided into three objectives, namely, (1) safe driving, (2) energy management, and (3) exhaust emission reduction. Based on the real-time road information, the driving scenario classifier (DSC) works towards determining the corresponding vehicle mode on which the cost function can be adjusted accordingly. The simulation is carried out in a realistic urban traffic simulation environment in SUMO. The results show that with the proposed model predictive control (MPC)-based strategy applied, safe driving in a trip involving a mixture of driving scenarios can be guaranteed throughout the entire driving. In addition, in comparison to the rule-based benchmark strategy, the proposed strategy can reduce the fuel consumption by 34.10% with battery kept in a healthy state of charge range, and the exhaust emissions (HC, CO, and NOx) are reduced by 25.36%, 72.30%, and 30.39%, respectively, which demonstrates the effectiveness and robustness of the proposed MPC-based strategy for CAHEVs.
Keywords: Eco-driving; Energy management strategy; Connected and automated vehicle; Hybrid electric vehicle; Intelligent transportation system; Model predictive control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307455
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307455
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115233
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().