EconPapers    
Economics at your fingertips  
 

Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios

Siyang Wang and Xianke Lin

Applied Energy, 2020, vol. 271, issue C, No S0306261920307455

Abstract: This paper proposes a bi-level eco-driving control strategy for connected and automated hybrid electric vehicles (CAHEVs) under mixed driving scenarios. First, the hybrid electric vehicle powertrain is modelled, and the communications via Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) are introduced as the main data sources for the decision-making of the control system. Next, the problem is divided into three objectives, namely, (1) safe driving, (2) energy management, and (3) exhaust emission reduction. Based on the real-time road information, the driving scenario classifier (DSC) works towards determining the corresponding vehicle mode on which the cost function can be adjusted accordingly. The simulation is carried out in a realistic urban traffic simulation environment in SUMO. The results show that with the proposed model predictive control (MPC)-based strategy applied, safe driving in a trip involving a mixture of driving scenarios can be guaranteed throughout the entire driving. In addition, in comparison to the rule-based benchmark strategy, the proposed strategy can reduce the fuel consumption by 34.10% with battery kept in a healthy state of charge range, and the exhaust emissions (HC, CO, and NOx) are reduced by 25.36%, 72.30%, and 30.39%, respectively, which demonstrates the effectiveness and robustness of the proposed MPC-based strategy for CAHEVs.

Keywords: Eco-driving; Energy management strategy; Connected and automated vehicle; Hybrid electric vehicle; Intelligent transportation system; Model predictive control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307455
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307455

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115233

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307455