EconPapers    
Economics at your fingertips  
 

80 Hours operation of a tubular solid oxide fuel cell using propane/air

Yu Chen, Minyi Lu, Huazheng Yang, Yingbang Yao, Tao Tao, Shengguo Lu, Chao Wang, Rajendran Ramesh, Michaela Kendall, Kevin Kendall, Xiaoping Ouyang and Bo Liang

Applied Energy, 2020, vol. 272, issue C, No S0306261920306115

Abstract: High power density and simple design are vital for these fuel cell-based portable power generation devices. This study provides an 8.6 g tubular SOFC with embedded a catalytic partial oxidation reformer, which is fabricated and operated for more than 100 h using propane/air. Nickel-iron nanosheets, as catalysts for reforming, supported on α-Al2O3 foam ceramic are synthesized by hydrothermal treatment. Testing for 80 h gives a power degradation of about 20% compared with the initial value. It is mainly attributed to sulfur-poisoning of nickel near anode/electrolyte interface according to transmission electron microscope (TEM) analysis. From TEM/energy dispersive spectroscopy line-scan results across the anode/electrolyte interface, sulfur as either aggregate at the nickel/yttria-stabilized zirconia grain boundaries or on the nickel grain surface, and no obvious carbon phase is founded. The maximum power density is 0.67 W cm−2 at 700 °C using propane/air (12 vol% propane), about 5% higher than the same cell using 20 vol% hydrogen.

Keywords: Propane; Ni-Fe/α-Al2O3 catalyst; Partial oxidation reformer; Tubular solid oxide fuel cell (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306115
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306115

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115099

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306115