An effective stochastic framework for smart coordinated operation of wind park and energy storage unit
Mohamed A. Mohamed,
Tao Jin and
Wencong Su
Applied Energy, 2020, vol. 272, issue C, No S0306261920307406
Abstract:
This paper proposes a stochastic transmission switching integrated interval robust chance-constrained (TSIRC) approach to assess the operation of a wind park-energy storage system (WPES) in a day ahead electricity market considering the system technical constraints. To this end, the WPES is assumed as a price-maker, making it possible to alter the market price based on its own profit. The problem formulation is constructed as a tri-level max-min-max structure during a 24-h time horizon. The first level maximizes the hourly profit of the WPES. In the second level, the system operation cost is minimized in the form of a security constrained unit commitment (SCUC) in which the contingency effect associated with the generation units and transmission lines (TLs) as well as the congestion of the TLs is modelled. Considering the independent system operator (ISO) preferences, the third level is dedicated to the robustness of the WPES, which would maximize the allowable output variation of the wind turbines. The proposed tri-level model is then formulated in an efficient bi-level structure using the Karush-Kuhn-Tacker (KKT) conditions. Since the operation of the wind turbine is inherently associated with uncertainty, the TSIRC approach as an effective tool is able to model the uncertainties of the wind units by increasing the WPES profit as a strategic producer while reducing the system operation cost. In addition, unscented transform (UT) as an effective tool is considered to model the uncertainty of the stochastic parameters. The performance evaluation of this work is assessed on an IEEE test system. Different case studies are provided which show the authenticity and effectiveness of the proposed model. The simulation results show that the proposed TSIRC has effectively reduced the amount of lines’ switching, and increased the power output of the wind park by 95% on average compared to the conventional TS-based model. In addition, the robustness of the system has increased, and the TSIRC has led the WPES’s profit to increase by almost 11.5% compared to the TS-based approach.
Keywords: Energy storage system (ESS); Wind park (WP); Transmission switching integrated interval robust chance-constrained (TSIRC); Uncertainty; Unscented transform (UT) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307406
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307406
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115228
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().