EconPapers    
Economics at your fingertips  
 

Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells

Weijiang Xue, Tianwu Chen, Zhichu Ren, So Yeon Kim, Yuming Chen, Pengcheng Zhang, Sulin Zhang and Ju Li

Applied Energy, 2020, vol. 273, issue C, No S030626192030742X

Abstract: In an electrochemical cell, unequal mechanical work due to mass action into the two electrodes can generate chemical potential difference that drives Li+ flow across the electrolyte, constituting the fundamental basis for electrochemically driven mechanical energy harvesting. The diffusional time scale inherent to the electrochemical setting renders efficient low-frequency energy conversion. From thermodynamic analyses we reveal that there exist two distinct paradigms for electrochemically driven mechanical energy harvesting, enabled by pressure or molar-volume asymmetry of the electrodes. Guided by the thermodynamic framework, we prototype the first molar-volume asymmetry based energy harvester consisting of an intercalation-conversion electrode couple. The harvester can operate under globally uniform pressure and deliver a high power density of ~0.90 µW cm−2 with long-term durability. Under an open-circuit condition, the device operates in a novel ratchetting mode under which compression/decompression cycling causes continuous rise in voltage, yielding a blasting power output of ~143.60 µW cm−2. Such a ratchet effect arises due to the chemomechanically induced residual stress in the electrodes during cycling. Compared to the pressure-asymmetry based harvesters, the new harvester offers high scalability, processability, safety, and large working area, which make it easy to increase the output power through synchronizing multilayer with large areas. Our device enables mechanical energy harvesting from low-frequency resources, including human daily activities.

Keywords: Energy harvesting; Chemomechanically; Intercalation-conversion electrode couple; Thermodynamic framework (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030742X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:273:y:2020:i:c:s030626192030742x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115230

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:273:y:2020:i:c:s030626192030742x