Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide
Hou-Yun Yang,
Yi-Xuan Wang,
Chuan-Shu He,
Yuan Qin,
Wen-Qiang Li,
Wei-Hua Li and
Yang Mu
Applied Energy, 2020, vol. 274, issue C, No S0306261920308047
Abstract:
Regulating cathodic interface properties towards highly effective CH4 production from CO2 is of great importance for energy storage using microbial electro-synthesis (MES). Herein, the feasibility and mechanism of two typical redox mediators, neutral red (NR) and anthraquinone-2, 6-disulfonate (AQDS), were evaluated for the improvement of CH4 formation from CO2 reduction in mixed-culture biocathodes of MESs. Results showed that the CH4 formation rates of biocathodes after modification with NR and AQDS were 5.8 and 3.5 times higher than that of unaltered cathodes. Moreover, the coulombic efficiency of CH4 formation improved from 44.27 ± 4.01% of the control cathode to 64.30 ± 4.83% and 62.26 ± 2.87% after modification with NR and AQDS, respectively. Consequently, the energy efficiency of MESs after cathode modification with NR and AQDS increased to 58.33 ± 3.17% and 53.21 ± 4.11% compared to 38.20 ± 3.12% without modification. Such improvements were likely attributed to the enhanced extracellular electron transfer of microbes, the reduction in internal resistances and the enrichment of hydrogenotrophic methanogens in the mixed-culture biocathodes after modification with NR and AQDS. This study provides an alternative strategy to regulate cathodic interface in MESs for renewable energy storage and biomethane production from CO2.
Keywords: CO2; Redox mediators; Microbial electro-synthesis; CH4; Energy efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308047
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308047
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115292
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().