Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation
Wei-Hsin Chen and
Yi-Bin Chiou
Applied Energy, 2020, vol. 274, issue C, No S0306261920308084
Abstract:
This study focuses on the design of a segmented thermoelectric generator system to maximize the system output power. Skutterudite, (Sr, Ba, Yb)yCo4Sb12 with 9.1% In0.4Co4Sb12, is used as the n-type element, while DD0.59Fe2.7Co1.3Sb11.8Sn0.2 is used as the p-type one. They both are employed as the hot side segments. Alternatively, hydrothermal synthesized nanostructure thermoelectric material (Bi0.4Sb1.6Te3) is chosen as the cold side segments. To achieve the optimum design, a numerical method is developed, while the multi-objective genetic algorithm is adopted. The evolutionary computation processes during seeking the optimum combination of the segments are visualized, and it is found that four generations are enough for reaching the target. With the leg length of 3 mm, the optimum n-type and p-type cold side segment lengths are 0.5 mm and 0.78 mm, respectively. Compared to the equal-segmented thermoelectric couple, the optimized couple at a temperature difference of 400 K can increase the output power by 21.94% and its efficiency is 14.05% which is much higher than conventional thermoelectric generators. The theory of impedance matching does not apply to the segmented thermoelectric generator. The heat flux distribution in the couple is dependent on the temperature difference. Overall, the segmented elements with evolutionary computation design is a promising tool for intensifying thermoelectric generator performance.
Keywords: Segmented elements; Skutterudite; Thermoelectric generators; Optimization; Multi-objective genetic algorithm; Evolutionary computation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308084
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115296
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().