EconPapers    
Economics at your fingertips  
 

Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution

Shen Du, Tian Xia, Ya-Ling He, Zeng-Yao Li, Dong Li and Xiang-Qian Xie

Applied Energy, 2020, vol. 275, issue C, No S0306261920308552

Abstract: Radial graded porous volumetric solar receiver is designed to match the non-uniform solar flux distribution. Based on the computed tomography and image-processing techniques, uniform and radial graded porous volumetric solar receivers are reconstructed. The 3D printing technique and suitable post processing are implemented to fabricate complex porous samples using super-alloy Inconel 718 as material. Both experimental and numerical studies are conducted to investigate the fluid flow and heat transfer processes in porous volumetric solar receivers. The results present that the 3D printed porous samples are suitable for solar thermal energy absorption and high temperature utilization. As for uniform porous receivers, porous media with small pore diameter has larger thermal efficiency because of enhanced convective heat transfer. Compared with the uniform porous receiver with highest thermal efficiency, the radial graded porous volumetric solar receiver with large pore diameter inside could further relatively increase the thermal efficiency by 4.1% while relatively decreases the flow resistance by 8.6%. The reasonable distribution of pore diameter of porous media could regulate the mass flow distribution and direct more air to the high heat flux region. Moreover, local overheating phenomenon is observed in the uniform porous receiver using air as heat transfer fluid. By applying the coupled optimization method, an optimum pore diameter distribution is determined for the radial graded porous volumetric solar receiver.

Keywords: Porous media; Volumetric solar receiver; Graded material; 3D printing; Non-uniform solar flux (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308552
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308552

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115343

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308552