Combining reactive transport modeling with geochemical observations to estimate the natural gas hydrate accumulation
Hailong Tian,
Ceting Yu,
Tianfu Xu,
Changling Liu,
Wei Jia,
Yuanping Li and
Songhua Shang
Applied Energy, 2020, vol. 275, issue C, No S0306261920308746
Abstract:
Predicting the distribution and resource of gas hydrates and understanding gas hydrate forming mechanisms are critical for assessing natural gas hydrate exploration potential, as well as exploiting hydrates. This study aims to provide a portable solution for evaluating resource of natural gas hydrate and quantifying contribution of methane sources via numerical simulations constrained by site-specific data. To numerically describe the complex process of biogenic methane production, an integrated simulation package, TOUGH + Hydrate + React (TOUGH + HR), was developed by coupling reactive transport, biodegradation and deposition of organic matter with behavior of hydrate-bearing system. Based on observed data from site SH2 in the South China Sea, a growing one-dimensional column model was constructed, and simulated via the developed TOUGH + HR tool. The results showed that when considering biogenic methane was the only source for hydrate, simulated maximum saturation of hydrate reached ~ 0.19, which is much lower than the observed value (~0.46), suggesting that the in-situ biogenic methane is not enough to form the high-saturation hydrate. When the upward flux of methane (considered as thermogenic methane) increased to 1.00 × 10−11kg·m-2·s-1, both simulated saturation and distribution of hydrates matched the observed data well, including the profile of remained total organic carbon (TOC), the location of interface between dissolved methane and sulfate (SMI), and the derived chlorinity. Simulation results suggest that the ratio of biogenic methane to thermogenic methane forming hydrates was about 1:3. Predicted amount of methane hydrate using the column model was 3258.33 kg, very close to the estimated based on field observation (3112.82 kg).
Keywords: Natural gas hydrate; Hydrate accumulation; Methane source; Reactive transport modeling; The South China Sea (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308746
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115362
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().