A generic energy prediction model of machine tools using deep learning algorithms
Yan He,
Pengcheng Wu,
Yufeng Li,
Yulin Wang,
Fei Tao and
Yan Wang
Applied Energy, 2020, vol. 275, issue C, No S0306261920309144
Abstract:
Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization.
Keywords: Energy consumption; Machine tools; Deep learning; Data-driven; Energy consumption features (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920309144
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115402
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().