Energy consumption analysis and prediction of electric vehicles based on real-world driving data
Jin Zhang,
Zhenpo Wang,
Peng Liu and
Zhaosheng Zhang
Applied Energy, 2020, vol. 275, issue C, No S030626192030920X
Abstract:
With increasing mass-adoption of electric vehicles, the energy consumption has become a key performance index to electric vehicle drivers, automakers and policy-makers. Accurate and real-time energy consumption prediction under real-world driving conditions is essential for alleviating the ‘range anxiety’ and can provide support for optimal battery sizing, energy-efficient route planning and charging infrastructures operation. In this paper, real-world driving data collected from fifty-five electric taxis in Beijing city are obtained and divided into three-level driving fragments. The influencing factors of energy consumption, including vehicle-, environment-, and driver-related factors, are extracted and studied. With the extracted key influencing factors, a novel machine learning-based energy consumption prediction framework integrated with driving condition prediction is proposed and used in actual energy consumption prediction. The real-world trip test results show that a root mean squared error of 0.159kWh (RMSE) and a mean absolute percentage error 12.68% (MAPE) are reached, the RMSE and the MAPE are respectively reduced by 32.05% and by 30.14% compared to the conventional method.
Keywords: Electric vehicles; Energy consumption prediction; Influencing factors; Driving condition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030920X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s030626192030920x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115408
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().