EconPapers    
Economics at your fingertips  
 

Impact of the chlorine value chain on the demand response potential of the chloralkali process

Franziska Klaucke, Christian Hoffmann, Mathias Hofmann and George Tsatsaronis

Applied Energy, 2020, vol. 276, issue C, No S0306261920308783

Abstract: Renewable sources of energy supply an increasing share to the electricity mix although they show much more fluctuations than conventional energy sources. Hence, net stability and availability represent very large challenges. Demand response can positively contribute to the solution of this issue as large electricity consumers adapt their consumption to the available electricity. In the past, chloralkali electrolysis has been suggested as such a large consumer. Unfortunately, its main product, chlorine, cannot be easily stored in large amounts, so that downstream processes have to operate based on a fluctuating feed. This work reviews the processes within the chlorine value chain, determines the most promising ones for flexibilisation based on their chlorine consumption, and analyses these processes in more detail to assign them to one of four flexibility categories. It is shown that 45% of the theoretical potential could be used for demand response right away.

Keywords: Demand response; Flexibility potential; Chloralkali process; Chlorine value chain; Demand side management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308783
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308783

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115366

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308783