EconPapers    
Economics at your fingertips  
 

Machine learning based very short term load forecasting of machine tools

Bastian Dietrich, Jessica Walther, Matthias Weigold and Eberhard Abele

Applied Energy, 2020, vol. 276, issue C, No S0306261920309521

Abstract: With the ongoing integration of renewable energies into the electrical power grid, industrial energy flexibility gains importance. To enable demand response applications, knowledge about the future energy demand is necessary. This paper presents a machine learning process to forecast the very short term load of two machine tools, which can be utilized as a decision support basis for control schemes and measures to increase energy flexibility and decrease energy cost in manufacturing. The presented process is developed and evaluated on production machines in a research factory. The results indicate that the developed machine learning process is feasible and creates an accurate very short term load forecasting model for different production machines. It can be used as a blueprint to develop load forecasting models for other production machines using the historic load profile and various machine and process data. A combination of time series features and an Artificial Neural Network proves to be the most robust model regarding the presented machine tools with achieved coefficients of determination between 0.57 and 0.64 for a 100 step forecast. Improvements are still needed regarding the forecasting accuracy, especially of load peaks, for which different measures are proposed.

Keywords: Energy flexibility; Load forecasting; Machine tool; Machine learning; Feature engineering (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309521
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309521

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115440

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309521