EconPapers    
Economics at your fingertips  
 

Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model

Zihan Zhou, Diankai Qiu, Shuang Zhai, Linfa Peng and Xinmin Lai

Applied Energy, 2020, vol. 277, issue C, No S0306261920310448

Abstract: A high-power proton exchange membrane fuel cell (PEMFC) stack usually composes many cells, which induce high difficulty in evaluating its mechanical state of stack assembly. A methodology based on composite model and material property equivalent is developed to predict the mechanical state in PEMFC stack. In this methodology, the stack system is modeled based on a finite element model (FEM), in which bipolar plate (BPP) and membrane exchange assembly (MEA) are combined into a composite component. Experiments with stamped BPP are carried out to validate the FEM of the stack, and both the predicted clamping force and endplates deformation of FEM have a great agreement with the experimental results. Based on the methodology, it is found that more uniform pressure distribution can be generated when high-stiffness endplates are applied and cell number of the stack increases. The cells approaching to mid-stack have more uniform pressure. The pressure distribution of the stack is very sensitive to the compression ratio. High compression ratios leads to large endplate deformation, which increases the average pressure deviation between simulated value and design value, and also increases non-uniformity of pressure distribution. This methodology offers the possibility of evaluating the mechanical state of high-power fuel cell stack and greatly improves the computational efficiency.

Keywords: High-power PEM fuel cell stack; Composite model; Material property equivalent; Active area; Mechanical state (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310448
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310448

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115532

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310448