Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy
Christopher Winstead,
Mahabir Bhandari,
James Nutaro and
Teja Kuruganti
Applied Energy, 2020, vol. 277, issue C, No S0306261920310552
Abstract:
Reducing peak power demand in a building can reduce electricity expenses for the building owner and contribute to the efficiency and reliability of the electrical power grid. For the building owner, reduced expenses come from the reduction or elimination of peak power charges on electricity bills. For the power system operator, reducing peak power demand leads to a more predictable load profile and reduces stress on the electric grid system. We present a computationally inexpensive, dynamic, and retrofit-deployable control strategy to effect peak load reduction and load shaping. The effectiveness of the control strategy is examined in a simulation with 80 air-conditioning units and 40 refrigeration units. The results show that a peak demand reduction of 60 kW can be achieved relative to peak demand in a typical set point–based approach. The proposed strategy was deployed in a gymnasium building with four rooftop HVAC units, where it showed over 15% peak demand (kW) reduction savings while maintaining or lowering energy consumption (in kilowatt-hours) relative to the set point–based thermostat controls.
Keywords: Demand-side management; Load shaping; Peak demand reduction; Priority-based control; Transactive control; IoT (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310552
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310552
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115543
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().