Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell
Pu He,
Yu-Tong Mu,
Jae Wan Park and
Wen-Quan Tao
Applied Energy, 2020, vol. 277, issue C, No S0306261920310679
Abstract:
A comprehensive macroscopic three-dimensional multiphase non-isothermal polymer electrolyte membrane fuel cell (PEMFC) model coupled with an improved electrochemical kinetics model considering the geometric structure parameters of the cathode catalyst layer (CCL) and oxygen transport process in CCL is developed. The effects of five CCL design parameters are investigated. It is found that the Pt loading of CCL has a significant effect on the performance, a low platinum (Pt) loading is more likely to cause oxygen starvation. The increase of Pt/C ratio can promote the performance significantly at a lower Pt/C ratio. A lower I/C ratio is good for the enhancement of limiting current density, a larger I/C ratio is good for the increase of maximum power density, and the increase in I/C ratio is better for the uniformity of membrane water distribution. With the decrease of carbon particle radius, the oxygen concentration on the Pt surface of CCL increases significantly. The increase of electrochemical specific area (ECSA) of Pt particles can promote the performance. In addition, a discussion on applicability of new correlations of capillary pressure-water saturation and effective diffusivity and their effects on the predicted PEMFC performance is presented.
Keywords: Polymer electrolyte membrane fuel cell; Three-dimensional multiphase non-isothermal model; Cathode catalyst layer; Pt loading; Pt/C ratio; I/C ratio (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310679
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310679
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115555
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().