EconPapers    
Economics at your fingertips  
 

Modeling and analysis of heat emissions from buildings to ambient air

Tianzhen Hong, Martina Ferrando, Xuan Luo and Francesco Causone

Applied Energy, 2020, vol. 277, issue C, No S0306261920310783

Abstract: Heat emissions from buildings is a significant source of anthropogenic heat influencing the urban microclimate; however, they are usually oversimplified in urban climate and microclimate modeling. This study developed a bottom-up physics-based approach to calculate heat emissions from buildings to the ambient air and implemented the approach in EnergyPlus. A simple result verification was conducted by comparing the EnergyPlus simulated results against the spreadsheet calculations. Simulations covering 16 commercial building types, four climates, and two energy efficiency levels were conducted to understand and evaluate the building heat emissions and their temporal patterns as well as three major components: (1) building envelope (convective heat transfer to ambient air), (2) zones (air exfiltration and exhaust air), and (3) HVAC systems (relief air and heat rejection from condensers or cooling towers). The main findings are: (1)heat emissions are usually higher than the site energy use (about 2.5 times), and their dynamics should be considered; (2)building characteristics and their energy systems lead to differences in heat emission contributions from the three components, and their dynamics, for example, in the warehouse models, the envelope component accounts for 90.4%, while it is 12.7% for the large office models; (3) for most building typologies, the climate has a strong impact on heat emissions, for example, buildings with dominant heat emissions from the zone exhaust air and/or the HVAC reject heat, a general decrease in heat emissions in hotter climates is observed, while envelope-dominated buildings show the opposite; and (4)building technologies that reduce energy use in buildings may perform differently in reducing heat emissions. The developed heat emissions calculation method can be adopted in EnergyPlus and most other building energy modeling programs. It can provide dynamic building heat emissions as an input to urban climate computational fluid dynamics (CFD) models at a higher spatial and temporal resolution than is currently available, to improve the simulation accuracy of the urban microclimate and capture the urban heat island effect and urban overheating.

Keywords: Buildings heat emission; Building performance simulation; Urban heat island effect; Urban environment; Microclimate; Anthropogenic heat (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310783
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310783

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115566

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310783