Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: Kinetic study and reactor performance prediction
S. Zare Ghorbaei and
H. Ale Ebrahim
Applied Energy, 2020, vol. 277, issue C, No S0306261920311119
Abstract:
CO2 removal in carbon capture and storage and potential of thermochemical energy storage are two main features of strontium oxide (SrO) carbonation reaction. To facilitate the simulation of a reactor for the energy storage and CO2 capture applications utilizing this reaction, it is critical to determine its kinetics. Thus, in this research, kinetic study of this non-catalytic gas-solid reaction considering bulk flow effect was investigated, for the first time, using the random pore model. In order to estimate the degree of the reaction and determine the reaction rate constant, activation energy, and diffusion coefficient of carbon dioxide in the product layer, a series of experiments was conducted within the temperature range of 800 °C–1000 °C and CO2 concentrations of 5 vol% to 40 vol% using a thermogravimeter analyzer. It was concluded that the order of the reaction was fractional (approximately first order). Further, the activation energy of inherent rate constants was estimated to be 64 kJ/mol. Furthermore, comparison of the predicted conversion-time profiles from the random pore model with experimental data revealed a good agreement. Besides, the diffusion coefficients of CO2 in the product layer were estimated at various temperatures using the best fit between experimental and simulation conversions. Also, prediction of a packed bed reactor performance for SrO carbonation was accomplished by the obtained kinetic parameters. Finally, the cycling study was performed and the residual conversions of SrO at 1000 and 1050 °C after 20 successive cycles were determined as 0.32 and 0.15, respectively.
Keywords: Kinetic study; SrO carbonation reaction; Random pore model; Thermochemical energy storage; Carbon capture and storage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311119
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115604
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().