EconPapers    
Economics at your fingertips  
 

Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones

Paul Westermann, Matthias Welzel and Ralph Evins

Applied Energy, 2020, vol. 278, issue C, No S0306261920310758

Abstract: Surrogate models can emulate physics-based building energy simulation with a machine learning model trained on simulation input and output data. The trained model is extremely fast to run, allowing us to estimate simulation outcomes for thousands of different building designs in seconds. Recent studies have shown the diverse benefits for sustainable building design. Surrogates were applied to provide rapid feedback at the early design stage, to accelerate sensitivity analysis, uncertainty analysis and design optimization, or to improve building model calibration.

Keywords: Surrogate model; Metamodel; Building performance simulation; Temporal convolutional neural network; Machine learning; Climate modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310758
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310758

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115563

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310758