Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones
Paul Westermann,
Matthias Welzel and
Ralph Evins
Applied Energy, 2020, vol. 278, issue C, No S0306261920310758
Abstract:
Surrogate models can emulate physics-based building energy simulation with a machine learning model trained on simulation input and output data. The trained model is extremely fast to run, allowing us to estimate simulation outcomes for thousands of different building designs in seconds. Recent studies have shown the diverse benefits for sustainable building design. Surrogates were applied to provide rapid feedback at the early design stage, to accelerate sensitivity analysis, uncertainty analysis and design optimization, or to improve building model calibration.
Keywords: Surrogate model; Metamodel; Building performance simulation; Temporal convolutional neural network; Machine learning; Climate modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310758
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115563
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().