A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil
Liu Yang,
Wenbing Weng and
Shiming Deng
Applied Energy, 2020, vol. 278, issue C, No S0306261920311855
Abstract:
In small- to medium- scale buildings such as residences and retails located in hot and humid regions, direct expansion based air conditioning systems are widely used for the control of indoor thermal environment. However, to simultaneously control indoor air temperature and humidity using direct expansion air conditioning systems, additional and costly provisions/installation spaces are usually required. Therefore, to address the inadequacies encountered in previous related studies, based on multi-evaporator technology, a novel direct expansion based air conditioning system having a two-sectioned evaporator or cooling coil (TS-DXAC) was proposed to provide variable dehumidification capacity and improved indoor air distribution. In this paper, the development of a steady-state physics-based mathematical model for the novel TS-DXAC system is presented. The model was developed by referring to the existing sub-models for the key system components, such as a compressor, a condenser and an evaporator, which were currently available in open literature. The developed model was experimentally validated using a purposely established prototype experimental TS-DXAC system, with the differences between experimental and predicted results of less than 6%. Using the validated TS-DXAC model, a follow-up modeling study was carried out on optimizing the sizes of the two sections. The simulation results suggested that a lower surface area ratio for the two sections (Rs) can lead to a larger variation ranges of both output total cooling load (TCC) and equipment sensible heat ratio (E SHR). For example, at the inlet state of 26 °C and 50% relative humidity, when Rs was altered from 1:1 to 1:3, the variation range for TCC was increased by 33%, and that for E SHR by 51%, which was beneficial to better dehumidification.
Keywords: Direct expansion; Two-sectioned cooling coil; Modeling study; Experimental validation; Variable dehumidification capacity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311855
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311855
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115688
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().