Simulation-based optimization framework for economic operations of autonomous electric taxicab considering battery aging
Jiwei Yao and
Fengqi You
Applied Energy, 2020, vol. 279, issue C, No S0306261920312137
Abstract:
This paper proposes a simulation-based optimization framework for an autonomous electric taxi (AET) to achieve economic optimization by determining the optimal operations in the operating time horizon. The operating time horizon of the AET is equally divided into a set of consecutive time slots. For each time slot, there are four possible operations: driving, cruising, parking, and charging. To reduce the computational complexity, instead of solving the scheduling problem for the whole operating time horizon as a single problem, the whole problem is decomposed into a set of subproblems that are built for a one-day period. From an integrated electric vehicle simulation model, which simulates the AET operation based on the optimal schedule determined by the optimization problem, precise battery status parameters, such as the state of charge, capacity loss and battery temperature, are derived and used as the initial values for the optimization problem with rolling horizon implementation. A case study on NYC is presented, and the results show that the proposed framework can extend the battery life by 3%, and also increase the daily profit by 3% and 520%, compared to the 24hr rule-based strategy and 8hr rule-based strategy, respectively.
Keywords: Autonomous electric taxi; Rolling horizon; Simulation; Optimal scheduling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920312137
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312137
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115721
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().