EconPapers    
Economics at your fingertips  
 

The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater

Trevor Hocksun Kwan, Yongting Shen, Tianxiang Hu and Gang Pei

Applied Energy, 2020, vol. 279, issue C, No S0306261920312654

Abstract: Despite the success of atmospheric water generators for providing drinking water to remote regions, this technology has a high specific energy consumption. This paper proposes to reuse the electrochemical water of the fuel cell for the vapor compression cycle based atmospheric water generator (VCC-AWG); After passing through an ambient heat exchanger to remove the electrochemical waste heat, the fuel cell flue gas that enters the VCC-AWG is at a higher relative humidity than natural atmospheric air, thus the freshwater yield per energy input can be significantly increased. Hence, the FC-VCC-AWG hybrid system is proposed to be a power and freshwater supply of a grid-independent home. The fuel cell model, the vapor compression cycle’s thermodynamic model, and humid air physics are coupled to analyze the overall system in terms of the fuel cell’s working condition, incoming airflow rate, compressor power consumption, and the ambient relative humidity. When RH = 0.75, adding a 2 kW fuel cell generated up to 3 kg/hr of freshwater, which is 50% higher than excluding the FC. The specific energy consumption can be 200 Wh/kg, so the VCC-AWG can be integrated with small sacrifices to the FC power output.

Keywords: Atmospheric water generator; Fuel cell; Humid air physics; Vapor compression cycle; Water recovery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920312654
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312654

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115780

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312654