EconPapers    
Economics at your fingertips  
 

Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization

Yelin Zhang, Xingxing Zhang, Pei Huang and Yongjun Sun

Applied Energy, 2020, vol. 279, issue C, No S030626192031299X

Abstract: Utilizing renewable energy to meet the energy demand, net-zero energy building (NZEB) is considered a promising solution to the worsening energy and environmental problems. Due to the intermittent and unstable characteristics of renewable energy (e.g. solar energy), NZEB needs to frequently exchange energy with the power grid. Such frequent energy interactions can impose negative impacts on the grid in terms of power balance and voltage stability. Existing studies demonstrated that there exist many influential parameters to NZEB grid interaction. However, the impacts of influential parameters have not been systematically compared and the key parameters with critical impacts are still unknown. Without knowing the key parameters, researchers may mistakenly optimize non-critical parameters, thereby leading to limited performance improvements; or they have to take parameters more than necessary into consideration, thereby causing unnecessarily high computation loads. Therefore, this study proposes a novel method to identify the key parameters affecting NZEB grid interactions. In the method, global sensitivity analysis is adopted to quantitatively compare the impacts of 24 influential parameters in three major performance aspects including over/under voltage, grid dependence and energy loss. Meanwhile, Monte-Carlo method is used to simulate the parameter uncertainties. The identified key parameters have been verified through comparing their performance improvements and computation loads. Providing an effective way to identify key parameters out of numerous ones, the study results can substantially reduce the unnecessary considerations of non-critical parameters in design optimizations. Also, the identified key parameters can be used for improving NZEB grid interaction with limited computing power requirement.

Keywords: Net-zero energy building; Key parameter; Sensitivity analysis; Monte Carlo; Grid interaction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192031299X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s030626192031299x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115820

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:279:y:2020:i:c:s030626192031299x