EconPapers    
Economics at your fingertips  
 

Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR

Thomas G. Kreutz, Eric D. Larson, Cristina Elsido, Emanuele Martelli, Chris Greig and Robert H. Williams

Applied Energy, 2020, vol. 279, issue C, No S0306261920313180

Abstract: This study explores the prospective techno-economic performance of facilities that produce low- and net-negative-carbon liquid transportation fuels and electricity with CO2 capture for enhanced oil recovery. The lignite and biomass-to-jet fuel process is based on KBR’s TRIG gasifier, Rectisol (for sulfur removal and CO2 capture), fixed-bed low temperature Fischer-Tropsch synthesis of liquid fuels, and Brayton/Rankine combined cycles to convert synthesis/refining off-gases and waste heat to electricity. This work leverages a recent, highly-detailed assessment of a prospective first-of-a-kind (FOAK) demonstration facility to develop highly detailed Aspen Plus process simulations for nine prospective Nth-of-a-kind (NOAK) plant equipment configurations. Component-level capital costs from the FOAK study are scaled and adjusted to reflective prospective learning-by-doing to estimate capital costs for the NOAK designs. NOAK plant economic performance is found to be largely insensitive to variations in plant configurations and electricity output fraction, but biomass input fraction significantly affects profitability. Facilities that consume only carbon–neutral biomass, with no lignite co-feed, have significantly net-negative carbon emissions and the most favorable prospective economics when carbon emissions are priced. For these facilities, the crude oil price required for plant economic viability falls rapidly from $100/bbl as carbon emission prices increase above $120/tonne CO2eq. In general, plants that co-fire lignite with biomass are less profitable (than 100% biomass plants) due to their higher net greenhouse gas emissions.

Keywords: Gasification; Biomass; Carbon negative emissions; Jet fuel; Carbon emission prices; Polygeneration plants (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313180
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313180

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115841

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313180