EconPapers    
Economics at your fingertips  
 

Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment

Jing-Li Fan, Shuo Shen, Shi-Jie Wei, Mao Xu and Xian Zhang

Applied Energy, 2020, vol. 279, issue C, No S0306261920313490

Abstract: Carbon capture, utilization, and storage (CCUS) is regarded as an important option to reduce the CO2 emission of the electricity industry, especially in China. But emissions reduction potential of CCUS within each special administrative region needs to be identified. We explored the near-term CO2 storage potential of coal-fired power plants in China from the county perspective. According to the results of emissions sources and storage sites within counties, the following findings were reached: 1) Coal-fired power plants are distributed in 441 counties, the oil fields are in 149 counties, and the deep saline aquifers are in 561 counties. The spatial distribution of storage sites and coal-fired power plants is not consistent across counties. 2) Considering the injection capacity of single well, the CO2 storage potential decreased by more than 50%. Thirty counties have emission reduction potential through CCUS, with a total of 99.01Mt/y. 3) The CCUS emission reduction of counties in the top five provinces accounts for 83.9% of the total. Hebei, Xinjiang, Tianjin, Jiangsu, and Anhui provinces can be regarded as demonstration provinces for near term project deployment.

Keywords: CCUS; CO2 geological storage; Storage potential; Injection capacity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313490
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313490

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115878

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313490