Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making
Saleh Seyedzadeh,
Farzad Pour Rahimian,
Stephen Oliver,
Sergio Rodriguez and
Ivan Glesk
Applied Energy, 2020, vol. 279, issue C, No S0306261920313702
Abstract:
Non-domestic buildings contribute 20% of the UK’s annual carbon emissions. A contribution exacerbated by its ageing stock of which only 7% is considered new-build. Consequently, the government has set regulations to decrease the amount of energy take-up by buildings which currently favour deep energy retrofitting analysis for decision-making and demonstrating compliance. Due to the size and complexity of non-domestic buildings, identifying optimal retrofit packages can be very challenging. The need for effective decision-making has led to the wide adoption of artificial intelligence in the retrofit strategy design process. However, the vast retrofit solution space and high time-complexity of energy simulations inhibit artificial intelligence’s application. This paper presents an energy performance prediction model for non-domestic buildings supported by machine learning. The aim of the model is to provide a rapid energy performance estimation engine for assisting multi-objective optimisation of non-domestic buildings energy retrofit planning. The study lays out the process of model development from the investigation of requirements and feature extraction to the application on a case study. It employs sensitivity analysis methods to evaluate the effectiveness of the feature set in covering retrofit technologies. The machine learning model which is optimised using advanced evolutionary algorithms provide a robust and reliable tool for building analysts enabling them to meaningfully explore the expanding solution space. The model is evaluated by assessing three thousand retrofit variations of a case study building, achieving a root mean square error of 1.02 kgCO2∕m2×year equal to 1.7% of error.
Keywords: Building energy performance; Data-driven model; Energy performance certificate; Machine learning; Non-domestic building emission rate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313702
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115908
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().