Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting
Weicong Kong,
Youwei Jia,
Zhao Yang Dong,
Ke Meng and
Songjian Chai
Applied Energy, 2020, vol. 280, issue C, No S0306261920313465
Abstract:
With the ever-increased penetration of solar energy in the power grid, solar photovoltaic forecasting has become an indispensable aspect in maintaining power system stability and economic operation. At the operating stage, the forecasting accuracy of renewables has a direct influence on energy scheduling and dispatching. In this paper, we propose a series of novel approaches based on deep whole-sky-image learning architectures for very short-term solar photovoltaic generation forecasting, of which the lookahead windows concern the scales from 4 to 20 min. In particular, multiple deep learning models with the integration of both static sky image units and dynamic sky image stream are explicitly investigated. Extensive numerical studies on various models are carried out, through which the experimental results show that the proposed hybrid static image forecaster provides superior performance as compared to the benchmarking methods (i.e. the ones without sky images), with up to 8.3% improvement in general, and up to 32.8% improvement in the cases of ramp events. In addition, case studies at multiple time scales reveal that sky-image-based models can be more robust to the ramp events in solar photovoltaic generation.
Keywords: Solar generation forecasting; Deep learning; Whole Sky image; Convolutional LSTM (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313465
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313465
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115875
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().