Oxy-cracking technique for producing non-combustion products from residual feedstocks and cleaning up wastewater
Abdallah D. Manasrah and
Nashaat N. Nassar
Applied Energy, 2020, vol. 280, issue C, No S030626192031360X
Abstract:
The oil industry faces economic and environmental challenges due to its energy- and water-intensive processes. Surplus residual feedstocks and the water produced via heavy oil upgrading and processing are among the most challenging problems in the oil industry. Utilization these waste materials and a lack of efficient technologies to treat them are the main challenges causing the industry to consider them as waste materials. Existing technologies only add a small value, require high capital investment, and generate high greenhouse gas emissions. Therefore, in this study, we review and highlight the major findings regarding the oxy-cracking process, which is introduced as an alternative beyond combustion, as an environmentally friendly technique for converting these feedstocks into value-added products and also enhances the recyclability of wastewater. Through these residual feedstocks are partially oxidized in basic aqueous media at mild operational temperatures (150–230 °C) and pressures (3.4–5.2 MPa). Several operating conditions have been reported to optimize the conversion and selectivity of the products, and the results showed that the temperature and residence time have significant impacts on the yield and environmental impact. The experimental findings were validated with theoretical calculations, which provided insights on understanding the kinetic behavior based on the radical mechanism. The characterization findings revealed that the oxy-cracking could be a platform for a wide range of products such as humic acids, clean fuel, and carbon nanomaterials, and to recover valuable metals. Moreover, this process could be implemented for treatment of oil sand processes affected water and for decomposing emerging pharmaceuticals.
Keywords: Residual feedstock; Petroleum coke; Wastewater; Humic acids; Metal recovery; Fuel; Tailing water; Pharmaceutical compound (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192031360X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s030626192031360x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115890
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().