Assessing the impact of inertia and reactive power constraints in generation expansion planning
S. Wogrin,
D. Tejada-Arango,
S. Delikaraoglou and
A. Botterud
Applied Energy, 2020, vol. 280, issue C, No S0306261920313842
Abstract:
On the path towards power systems with high renewable penetrations and ultimately carbon-neutral, more and more synchronous generation is being displaced by variable renewable generation that does not currently provide system inertia nor reactive power support. This could create serious issues of power system stability in the near future, and countries with high renewable penetrations such as Ireland are already facing these challenges. Therefore, this paper aims at answering the questions of whether and how explicitly including inertia and reactive power constraints in generation expansion planning would affect the optimal capacity mix of the power system of the future. Towards this end, we propose the novel Low-carbon Expansion Generation Optimization model, which explicitly accounts for: unit commitment constraints, Rate of Change of Frequency inertia requirements and virtual inertia provision, and, a second-order cone programming approximation of the AC power flow, accounting for reactive power constraints. An illustrative case study underlines that disregarding inertia and reactive power constraints in generation expansion planning can result in additional system cost, system infeasibilities, a distortion of optimal resource allocation and inability to reach established policy goals.
Keywords: Generation expansion planning; Inertia; Reactive power; Unit commitment (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313842
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313842
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115925
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().