EconPapers    
Economics at your fingertips  
 

Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine

A. d'Adamo, C. Iacovano and S. Fontanesi

Applied Energy, 2020, vol. 280, issue C, No S0306261920314057

Abstract: The need for Internal Combustion Engines (ICEs) to face near-future challenges of higher efficiency and reduced emissions is leading to a renewed interest towards lean-combustion. Several operational issues are associated to lean combustion, such as an abrupt increase of combustion cycle-by-cycle variability (CCV), leading to unbearable levels of Indicated Mean Effective Pressure (IMEP) variation and to misfiring cycles. Significant potential in the wide-scale establishment of lean combustion might come from Large Eddy Simulation (LES), which is able to elucidate the relationships between local physical processes (e.g. velocity magnitude, Air to Fuel Ratio (AFR), etc.) and early combustion progress (e.g. 1%) in unprecedented manners. To this aim, an improved ignition model for LES is proposed in the paper. Two premixed propane-air lean strategies are selected from the wide TCC-III database. A lean-stable (λ=1.10, also named lean) and lean-unstable (λ=1.43, also named ultra-lean) conditions are simulated, highlighting the model capability to well reproduce the sudden rise in CCV for increased mixture dilution. Explanations are given for the observed behaviour and a hierarchical quest for CCV dominant factors is presented. Finally, the different role of local flow field is highlighted for the two cases, and the comparison of optical acquisitions of OH* emission against simulated flame iso-surface up to 1% burn duration reinforce the simulation fidelity. The study shows the investigation possibilities of innovative combustion strategies given by advanced LES simulations. The understanding of turbulent combustion dynamics and the knowledge of the related lean-burn instabilities are key enabler for the exploration of new efficient lean-burn operations.

Keywords: Combustion cyclic variability; Energy efficient combustion; Spark-ignition modelling; Large-eddy simulation; Lean combustion; Turbulent combustion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314057
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314057

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115949

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314057