EconPapers    
Economics at your fingertips  
 

pH swing adsorption process for ambient carbon dioxide capture using activated carbon black adsorbents and immobilized carbonic anhydrase biocatalysts

Antonio R. Cuesta and Chunshan Song

Applied Energy, 2020, vol. 280, issue C, No S0306261920314483

Abstract: Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.

Keywords: Carbon dioxide adsorption; Carbon capture; Ambient air carbon capture; Carbon adsorbent; Regenerative adsorbent; Biocatalyst; Carbonic anhydrase; Swing adsorption process; pH swing adsorption (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314483

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314483