EconPapers    
Economics at your fingertips  
 

In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell

Erdogan Guk, Manoj Ranaweera, Vijay Venkatesan, Jung-Sik Kim and WooChul Jung

Applied Energy, 2020, vol. 280, issue C, No S0306261920314574

Abstract: The electrode temperature distribution of a solid oxide fuel cell is an important parameter to consider for gaining better insight into the cell performance and its temperature-related degradations. The present efforts of measuring gas channel temperatures do not accurately reveal the cell surface temperature distribution. Therefore, the authors propose a cell-integrated multi-junction thermocouple array to measure the electrode temperature distribution from a working solid oxide fuel cell. In this work, the authors deposited a thin film/wire multi-channel thermal array on the cathode of a commercially-sourced solid oxide fuel cell. The temperature of the cell was measured under varying fuel compositions of hydrogen and nitrogen. The multi-channel array showed excellent temperature correlation with the fuel flow rate and with the cell’s performance whilst commercial thermocouples showed a very dull response (10 ~ 20 °C discrepancy between thermocouples and the multi-channel array). Furthermore, cell temperature measurements via the multi-channel array enabled detecting potential fuel crossover. This diagnostic approach is applied to a working solid oxide fuel cell, yielding insights into key degradation modes including gas-leakage induced temperature instability, its relation to the theoretical open circuit voltage and current output, and propagation of structural degradation. It is envisaged that the use of the multi-thermocouple array techniques could lead to significant improvements in the design of electrochemical energy devices, like fuel cells and batteries and their safety features, and other hard-to-reach devices such as inside an internal combustion engine or turbine blades.

Keywords: Solid oxide fuel cells; Cathode temperature of SOFC; Thin-film thermocouples; Multi-thermocouple array; Fuel flowrate-OCV relationship (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314574
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314574

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116013

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314574