Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives
Xiang Zhao and
Fengqi You
Applied Energy, 2021, vol. 283, issue C, No S0306261920315452
Abstract:
The ongoing COVID-19 pandemic leads to a surge on consumption of respirators. This study proposes a novel and effective waste respirator processing system for protecting public health and mitigating climate change. Respirator sterilization and pre-processing technologies are included in the system to resist viral infection and facilitate unit processes for respirator pyrolysis, product separation, and downstream processing for greenhouse gas (GHG) emission reduction. We evaluate the system’s environmental performance through high-fidelity process simulations and detailed life cycle assessment. Techno-economic analysis results show that the payback time of the waste respirator processing system is seven years with an internal rate of return of 21.5%. The tipping fee and discount rate are the most influential economic factors. Moreover, the unit life cycle GHG emissions from the waste respirator processing system are 12.93 kg CO2-eq per thousand waste respirators treated, which reduces GHG emissions by 59.08% compared to incineration-based system so as to mitigate climate change.
Keywords: Waste respirator processing; COVID-19; Process design and integration; Techno-economic analysis; Life cycle assessment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:283:y:2021:i:c:s0306261920315452
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116129
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().