Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19
Liqiao Huang,
Qi Liao,
Rui Qiu,
Yongtu Liang and
Yin Long
Applied Energy, 2021, vol. 283, issue C, No S0306261920317219
Abstract:
With the coronavirus pandemic wreathing havoc around the world, power industry has been hit hard due to the proposal of lockdown policies. However, the impact of lockdowns and shutdowns on the power system in different regions as well as periods of the pandemic can hardly be reflected on the foundation of current studies. In this paper, a prediction-based analysis method is developed to point out the electricity consumption gap resulted from the pandemic situation. The core of this method is a novel optimized grey prediction model, namely Rolling IMSGM(1,1) (Rolling Mechanism combined with grey model with initial condition as Maclaurin series), which achieves better prediction results in the face of long-term emergencies. A novel initial condition is adopted to track data with various characteristics in the form of higher-order polynomials, which are then determined by intelligent algorithms to realize accurate fitting. Historical power consumption data in China are utilized to carry out the monthly forecasts during COVID-19. Compared with other competitive models’ prediction results, the superiority of IMSGM(1,1) are demonstrated. Through analyzing the gap between predicted consumption values and the actual data, it can be found that the impact of the pandemic on electricity varies in different periods, which is related to its severity and the local lockdown policies. This study helps to understand the impact on power industry in the face of such an emergency intuitively so as to respond to possible future events.
Keywords: Electricity consumption gap; Prediction-based analysis; IMSGM(1,1); COVID-19 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:283:y:2021:i:c:s0306261920317219
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116339
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().