Modelling of modular battery systems under cell capacity variation and degradation
Daniel J. Rogers,
Louis J.M. Aslett and
Matthias C.M. Troffaes
Applied Energy, 2021, vol. 283, issue C, No S0306261920317372
Abstract:
We propose a simple statistical model of electrochemical cell degradation based on the general characteristics observed in previous large-scale experimental studies of cell degradation. This model is used to statistically explore the behaviour and lifetime performance of battery systems where the cells are organised into modules that are controlled semi-independently. Intuitively, such systems should offer improved reliability and energy availability compared to monolithic systems as the system ages and cells degrade and fail. To validate this intuition, this paper explores the capacity evolution of populations of systems composed of random populations of cells. This approach allows the probability that a given system design meets a given lifetime specification to be calculated. A cost model that includes the effect of uncertainty in degradation behaviour is introduced and used to explore the cost-benefit trade-offs arising from the interaction of degradation and module size. Case studies of an electric vehicle battery pack and a grid-connected energy storage system are used to demonstrate the use of the model to find lifetime cost-optimum designs. It is observed that breaking a battery energy storage system up into smaller modules can lead to large increases in accessible system capacity and may lead to a decision to use lower-quality, lower-cost cells in a cost-optimum system.
Keywords: Batteries; Battery systems; Cell degradation; Lithium ion; Energy storage; Reliability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317372
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:283:y:2021:i:c:s0306261920317372
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116360
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().