Multidisciplinary design optimization of distributed energy generation systems: The trade-offs between life cycle environmental and economic impacts
Junchen Yan,
Osvaldo A. Broesicke,
Xin Tong,
Dong Wang,
Duo Li and
John C. Crittenden
Applied Energy, 2021, vol. 284, issue C, No S030626192031597X
Abstract:
Distributed energy systems (DES) are the focus of increasing attention because they have the potential to enhance the sustainability performance of energy generation. Previous DES researches evaluated various distributed energy technologies and systems from different aspects. However, there is still a research gap to evaluate and compare the multiple technology combinations and sizes for finding optimal energy solutions under various scenarios. This study aims to determine the best combination of technologies and their corresponding sizes for DES for various building types and climate zones in terms of life cycle environmental and economic impact. We developed parametric models (which considers dynamic hour by hour energy demand) for six commercially available distributed energy technologies and simulated the performance of them under various conditions. Then, we used a novel approach – multidisciplinary design optimization (MDO) to examine the billions of options (e.g., technologies, sizes, climate zone, Etc.) and identified the Pareto front with the optimal environmental and economic impact. According to MDO simulations, the microturbine-solar PVs-lithium ion battery and solid oxide fuel cells-solar PVs-lithium ion battery are two optimal combinations of technologies for three commercial building types for five climate zones. The DES can primarily reduce the environmental impact compared to conventional centralized energy production (CCEP) by 16–61% in all scenarios. However, the life cycle cost of DES is higher than CCEP, especially for SOFC-based DES. The microturbine-based DES is more cost-competitive and economical (about 65%, 32%, and 64% lower than SOFC-based DES for the small, medium, and large office, respectively).
Keywords: Distributed energy systems; Multidisciplinary design optimization; Renewable energy; Parametric modelling; Life cycle assessment; Life cycle cost (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192031597X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:284:y:2021:i:c:s030626192031597x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116197
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().