Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site
Tao Yu,
Guoqing Guan,
Dayong Wang,
Yongchen Song and
Abuliti Abudula
Applied Energy, 2021, vol. 285, issue C, No S0306261921000325
Abstract:
In 2017, an offshore methane hydrate production test was successfully conducted at well SHSC-4 in the Shenhu Area of the South China Sea, but the long-term gas production behavior is still unknown and requires further investigation. In this study, a multi-layered methane hydrate reservoir model with three sublayers of the hydrate-bearing layer (HBL), three-phase layer (TPL), and free gas layer (FGL) was built based on the actual geological conditions at this site, and a short-term simulation was initially conducted to verify the validity of the reservoir model. Afterwards, the long-term simulations were conducted to predict the hydrate dissociation and gas production behaviors in the reservoir and investigate the contributions of each sublayer to the total gas production, and the effects of the intrinsic permeability of each sublayer on the gas production were fully examined. The simulation results indicated that the average gas production rate (1.83 × 103 ST m3/d) was less than half of that confirmed during the 2017 Shenhu production test (5.15 × 103 ST m3/d). The majority of the total gas production originated from the free gas in the FGL (56.5%), followed by the methane gas released from hydrate dissociation in the HBL (24.1%), and the TPL contributed the least to the gas recovery (19.4%). In addition, if the method of permeability enhancement was applied to the methane hydrate reservoir at well SHSC-4, the gas production could be greatly promoted, but the mechanisms were different. Finally, the following application priority was recommended: HBL > FGL > TPL.
Keywords: Methane hydrate; Shenhu Area; Gas production; Permeability enhancement; Hydrate reformation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921000325
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000325
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116466
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().