EconPapers    
Economics at your fingertips  
 

Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests

Ranjani Siriwardane, Jarrett Riley, William Benincosa, Samuel Bayham, Michael Bobek, Douglas Straub and Justin Weber

Applied Energy, 2021, vol. 286, issue C, No S0306261921000659

Abstract: A Copper-Ferri-Manganese-Aluminate spinel (CuFeMnAlO4+δ) oxygen carrier, developed at the US Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), shows promising results for chemical looping combustion with methane. Attrition resistance of the spinel oxygen carrier (160–600 µm) produced by a wet agglomeration method was significantly higher than that observed previously with a Copper-Ferri-Aluminate (CuFeAlO4) oxygen carrier. Improved attrition resistance of the novel carrier can be attributed to minimal alumina phase segregation and minimal carbon formation. Heats of reaction measured by differential scanning calorimetry indicated exothermicity during reduction with methane. The total oxygen transfer capacity of the material was about 10.5 wt% at 850 °C. The attrition resistance and the oxygen transfer capacity of the carrier prepared at a commercial manufacturing facility (180 kg) were very similar to observed values during the development phase with the lab scale preparations. The material displays satisfactory methane conversion and significantly high particle durability during a 54 h test campaign conducted in NETL’s 50-kWth chemical looping dual fluid bed reactor unit at temperatures ranging from 700 to 900 °C. Low oxygen carrier make-up cost, due to the use of natural ore and pigment grade raw materials during synthesis and very low attrition rates, exceeded the performance goals determined by systems studies.

Keywords: CuFeMnAlO4+δ oxygen carrier; Methane chemical looping combustion t; Oxygen carrier commercial preparation; Attrition resistant oxygen carrier (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921000659
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000659

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116507

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000659