Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage
Yuan-wu Xu,
Xiao-long Wu,
Xiao-bo Zhong,
Dong-qi Zhao,
Marco Sorrentino,
Jianhua Jiang,
Chang Jiang,
Xiaowei Fu and
Xi Li
Applied Energy, 2021, vol. 286, issue C, No S0306261921000660
Abstract:
Safety and reliability are key objectives for the efficient operation of solid oxide fuel cell (SOFC) power generation systems. Out of many possible faults, the gas leakage of SOFC stack remains a critical issue that leading to efficiency reduction or even degradation. Therefore, the real-time monitoring and diagnosis of gas leakage in the power generation systems are not only an important premise to improve the efficiency, but also can develop the corresponding fault-tolerant strategy for ensuring the system performance. Motivated by this fact, an on-line fault diagnosis scheme based on mechanism model and data-driven method is proposed to monitor and diagnose the gas leakage of the stack. Firstly, the two-state mechanism model of the SOFC stack is established, which can effectively describe the temperature of the fuel layer and air layer. Then, easily-measured stack inputs and outputs are selected, and a novel gas leakage state estimator combined with unscented Kalman filter (UFK) is developed to reconstruct the leakage state. Furthermore, an adaptive thresholds generator is designed to enhance the robustness of the diagnostic scheme. The performance of the fault diagnosis scheme under different leakage scenarios is evaluated, and the simulation results demonstrate the effectiveness of the proposed scheme. The sudden stack fuel leakage failure that occurred in the stable power generation experiment further illustrates the practicability of the scheme. The proposed fault diagnosis scheme has good practicability and can guide the next step compensates for leakage.
Keywords: Solid oxide fuel cell (SOFC); Fault diagnosis; Gas leakages; Model-based; Data-driven (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921000660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000660
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116508
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().