Heusler alloy-based heat engine using pyroelectric conversion for small-scale thermal energy harvesting
Mickaël Lallart,
Linjuan Yan,
Hiroyuki Miki,
Gaël Sebald,
Gildas Diguet,
Makoto Ohtsuka and
Manfred Kohl
Applied Energy, 2021, vol. 288, issue C, No S0306261921001525
Abstract:
As an alternative to thermoelectric generators, heat engines show great interest thanks to their ability to convert temperature spatial gradient into time-domain temperature variations or vibrations. To this end, MultiPhysic Memory Alloys (MPMAs), combining shape memory characteristics with ferromagnetic properties, provide significant attractive characteristics such as sharp transition with reduced hysteresis as well as magnetic properties enabled by heating, thus allowing easier device development and implementation. In this study, we report the development of a heat engine for small-scale energy harvesting where the MPMA transfers its heat to a pyroelectric element that provides thermal to electrical energy conversion, yielding a more direct energy conversion path compared to conventional electromechanical heat engines. Furthermore, thermally decoupling the pyroelectric element from the MPMA allows a faster cooling of the latter, accounting for higher variation frequency. Compared to the use of electromagnetic transduction through a coil attached to the moving MPMA, this approach is shown to provide 3 to 9 times more power density (according to considered volume), with theoretical potential gains from 8 to 25 with the use of nonlinear electrical interfaces.
Keywords: Energy harvesting; Heat engine; Shape memory alloy; Ferromagnetism; Pyroelectric; Thermal (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001525
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001525
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116617
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().