EconPapers    
Economics at your fingertips  
 

Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating

Shengyuan Zhong, Xiaoyuan Wang, Jun Zhao, Wenjia Li, Hao Li, Yongzhen Wang, Shuai Deng and Jiebei Zhu

Applied Energy, 2021, vol. 288, issue C, No S0306261921001586

Abstract: Applications of electric heating, which can improve carbon emission reduction and renewable energy utilization, have brought new challenges to the safe operation of energy systems around the world. Regenerative electric heating with load aggregators and demand response is an effective means to mitigate the wind curtailment and grid operational risks caused by electric heating. However, there is still a lack of models related to demand response, which results in participants not being able to obtain maximum benefits through dynamic subsidy prices. This study uses the Weber–Fechner law and a clustering algorithm to construct quantitative response characteristics models. The deep Q network was used to build a dynamic subsidy price generation framework for load aggregators. Through simulation analysis based on the evolutionary game model of a project in a rural area in Tianjin, China, the following conclusions were drawn: compared with the benchmark model, regenerative electric heating users can save up to 8.7% of costs, power grid companies can save 56.6% of their investment, and wind power plants can increase wind power consumption by 17.6%. The framework proposed in this study considers user behavior quantification of demand response participants and the differences among users. Therefore, the framework can provide a more reasonable, applicable, and intelligent system for regenerative electric heating.

Keywords: Regenerative electric heating; Demand response; Load aggregators; deep Q network; Weber–Fechner law (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001586

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116623

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001586