Minimum transmissivity and optimal well spacing and flow rate for high-temperature aquifer thermal energy storage
Daniel T. Birdsell,
Benjamin M. Adams and
Martin O. Saar
Applied Energy, 2021, vol. 289, issue C, No S0306261921001884
Abstract:
Aquifer thermal energy storage (ATES) is a time-shifting thermal energy storage technology where waste heat is stored in an aquifer for weeks or months until it may be used at the surface. It can reduce carbon emissions and HVAC costs. Low-temperature (<25 °C) aquifer thermal energy storage (LT-ATES) is already widely-deployed in central and northern Europe, and there is renewed interest in high-temperature (>50 °C) aquifer thermal energy storage (HT-ATES). However, it is unclear if LT-ATES guidelines for well spacing, reservoir depth, and transmissivity will apply to HT-ATES. We develop a thermo-hydro-mechanical-economic (THM$) analytical framework to balance three reservoir-engineering and economic constraints for an HT-ATES doublet connected to a district heating network. We find the optimal well spacing and flow rate are defined by the “reservoir constraints” at shallow depth and low permeability and are defined by the “economic constraints” at great depth and high permeability. We find the optimal well spacing is 1.8 times the thermal radius. We find that the levelized cost of heat is minimized at an intermediate depth. The minimum economically-viable transmissivity (MEVT) is the transmissivity below which HT-ATES is sure to be economically unattractive. We find the MEVT is relatively insensitive to depth, reservoir thickness, and faulting regime. Therefore, it can be approximated as 5⋅10−13 m3. The MEVT is useful for HT-ATES pre-assessment and can facilitate global estimates of HT-ATES potential.
Keywords: High-temperature aquifer thermal energy storage; HT-ATES; Heat storage; Reservoir engineering; Levelized cost of heat; Geothermal energy (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001884
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:289:y:2021:i:c:s0306261921001884
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116658
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().