New step-by-step retrofitting model for delivering optimum timing
Iná Maia,
Lukas Kranzl and
Andreas Müller
Applied Energy, 2021, vol. 290, issue C, No S0306261921002348
Abstract:
Although the Energy Performance of Buildings Directive 2018/844/EU introduced the building renovation passport and by such proposed to consider step-by-step renovation, a literature review could not identify any explicit step-by-step retrofitting optimisation model. Therefore, the present study seeks to explore the following research questions: which indications regarding the optimum timing of renovation steps can a net present value maximising model deliver; how are model’s results impacted by the interdependency of renovation steps and by homeowner’s budget restrictions. The model relies on three pillars: homeowners’ budget restrictions; building material ageing processes; and interdependency between the retrofitting steps. Implemented as a mixed-integer linear program, it maximises the net present value of households’ energy-related cash flows, and delivers the optimum timing when each step should be performed. As input data, five real-life building renovation roadmaps were used. The appropriate metric to assess building’s retrofitting energy savings is also discussed. When comparing both single-step and step-by-step approaches, the step-by-step presented 11–22% higher cumulated energy savings. Results also show that a renovation period would last between 1 and 14 years and 2 to 11 years, depending on whether interdependency of measures is considered. This has direct implications on the improvement of building stocks’ energy efficiency, and consequently, the achievement of decarbonisation targets set for 2050. In this context, the model delivers a more concrete time horizon perspective in regards to the achievement of these targets. Future work will include quantifying the economic effects of interdependency of steps and expanding the analysis for varies techno-economic building typologies.
Keywords: Step-by-step retrofitting; Mixed-integer linear programming; Net present value; Building renovation passport; Building stock; Decarbonisation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002348
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002348
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116714
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().